Новости компаний
Открыть карту ребенку: пошагово от документов до активации
А ведь многие родители задумываются, как приучить ребёнка к деньгам с малых лет, особенно когда вокруг столько соблазнов. Кстати, это не просто
Топ новостроек Нижнего Новгорода 2025: где купить квартиру выгодно?
Инвестиции в бетон 2.0: Гид по самым ожидаемым премьерам рынка недвижимости Нижнего НовгородаРынок недвижимости Нижнего Новгорода переживает
Точный расчет ОСАГО: как избежать переплаты и учесть все коэффициенты
Неточности в расчете стоимости полиса приводят к завышению цены на 10–30%. Ошибки в коэффициентах или неверные данные увеличивают расходы, которых
Машина времени и денег: почему российский автовладелец перестал бояться залогов
Если выйти на балкон любого многоэтажного дома в спальном районе Москвы, Петербурга или Екатеринбурга, взору откроется не просто панорама заставленных
17.07.2019 в 12:05 [43]
Великое открытие художников ренессанса
Описывая в дальнейшем различные варианты научной системы перспективы и оценивая как положительные, так и отрицательные стороны таких вариантов, будем всегда понимать, что художник вовсе не обязан им строго следовать. Ведь его задачи много шире протокольно точной передачи пространства и заполняющих его предметов. Однако при искусствоведческом анализе художественного произведения полезно понимать, к какому из возможных вариантов научной системы перспективы ближе художник, понимать, почему он интуитивно приближается к этому, а не какому-либо другому, столь же научно обоснованному способу изображения. Да и художнику полезно понимать научную основу используемых им изобразительных приемов.
Будем в своих рассуждениях основываться на великом открытии художников Ренессанса, на том, что в основе любой системы научной перспективы должен лежать метод изображения произвольной точки картинного пространства — того пространства, которое изображается художником и которое лежит за плоскостью картины. На илл. 2 дана схема, позволяющая пояснить постановку задачи. Художник смотрит на точку В% находящуюся в картинном пространстве. Где будет лежать изображение В' этой точки на картинной плоскости К? В системе ренессансной перспективы задача решалась бы элементарно: соединив глаз А с точкой В лучом зрения и найдя точку картинной плоскости В”, в которой луч зрения пересекает плоскость Ку можно было бы найти изображение точки В — ею оказалась бы точка В". Поскольку никаких специальных предположений точке В не делалось, ее можно рассматривать как произвольную точку картинного пространства, и поставленная задача, таким образом, решена.
Этот ход мысли повторяет соображения, положенные в свое время в основу ренессансной системы перспективы. Но описанный ход мыслей никак не учитывает работы мозга. Ведь на самом деле из-за, условно говоря, «растяжений» сетчаточного образа изображение точки В сместится, например, в точку Б'. Как найти положение точки В' на картинной плоскости К? Здесь можно предложить такой прием. Возьмем на картинной плоскости некоторую начальную точку О и будем местонахождение любой точки картинного пространства определять относительно введенного начала О: на приведенной схеме точка В отстоит от точки О на удалении В, смещена вправо на величину 5 и располагается выше О на величину Нв. Изображением точки О на картинной плоскости может служить она сама, важно лишь, чтобы, будучи раз назначенной, она свою роль геометрического начала играла для всех точек картинного пространства (ее нельзя менять в процессе построения изображения).
Будем в своих рассуждениях основываться на великом открытии художников Ренессанса, на том, что в основе любой системы научной перспективы должен лежать метод изображения произвольной точки картинного пространства — того пространства, которое изображается художником и которое лежит за плоскостью картины. На илл. 2 дана схема, позволяющая пояснить постановку задачи. Художник смотрит на точку В% находящуюся в картинном пространстве. Где будет лежать изображение В' этой точки на картинной плоскости К? В системе ренессансной перспективы задача решалась бы элементарно: соединив глаз А с точкой В лучом зрения и найдя точку картинной плоскости В”, в которой луч зрения пересекает плоскость Ку можно было бы найти изображение точки В — ею оказалась бы точка В". Поскольку никаких специальных предположений точке В не делалось, ее можно рассматривать как произвольную точку картинного пространства, и поставленная задача, таким образом, решена.
Этот ход мысли повторяет соображения, положенные в свое время в основу ренессансной системы перспективы. Но описанный ход мыслей никак не учитывает работы мозга. Ведь на самом деле из-за, условно говоря, «растяжений» сетчаточного образа изображение точки В сместится, например, в точку Б'. Как найти положение точки В' на картинной плоскости К? Здесь можно предложить такой прием. Возьмем на картинной плоскости некоторую начальную точку О и будем местонахождение любой точки картинного пространства определять относительно введенного начала О: на приведенной схеме точка В отстоит от точки О на удалении В, смещена вправо на величину 5 и располагается выше О на величину Нв. Изображением точки О на картинной плоскости может служить она сама, важно лишь, чтобы, будучи раз назначенной, она свою роль геометрического начала играла для всех точек картинного пространства (ее нельзя менять в процессе построения изображения).
© NEWS.NNOV.RU - alya1521
При любом использовании материалов гиперссылка на сайт NEWS.NNOV.RU обязательна.
При любом использовании материалов гиперссылка на сайт NEWS.NNOV.RU обязательна.
Комментировать






